电动车论坛

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
12
返回列表 发新帖
楼主: rover
打印 上一主题 下一主题

这个充电器怎么样?

[复制链接]
11#
 楼主| 发表于 2005-7-22 11:00:38 | 只看该作者

这个充电器怎么样?

阀控式铅酸蓄电池的电化学反应原理

    阀控式铅酸蓄电池的电化学反应原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。
    充电过程中存在水分解反应,当正极充电到70%时,开始析出氧气,负极充电到90%时开始析出氢气,由于氢氧气的析出,如果反应产生的气体不能重新复合得用,电池就会失水干涸。
    对于早期的传统式铅酸蓄电池,由于氢氧气的析出及从电池内部逸出,不能进行气体的再复合,是需经常加酸加水维护的重要原因;而阀控式铅酸蓄电池能在电池内部对氧气再复合利用,同时抑制氢气的析出,克服了传统式铅酸蓄电池的主要缺点。
12#
 楼主| 发表于 2005-7-22 11:05:35 | 只看该作者

这个充电器怎么样?

阀控式铅酸蓄电池的氧循环原理
    阀控式铅酸蓄电池采用负极活性物质过量设计,AG或GEL电解液吸附系统,正极在充电后期产生的氧气通过AGM或GEL空隙扩散到负极,与负极海绵状铅发生反应变成水,使负极处于去极化状态或充电不足状态,达不到析氢过电位,所以负极不会由于充电而析出氢气,电池失水量很小,故使用期间不需加酸加水维护。
    在阀控式铅酸蓄电池中,负极起着双重作用,即在充电末期或过充电时,一方面极板中的海绵状铅与正极产生的O2反应而被氧化成一氧化铅,另一方面是极板中的硫酸铅又要接受外电路传输来的电子进行还原反应,由硫酸铅反应成海绵状铅。
    在电池内部,若要使氧的复合反应能够进行,必须使氧气从正极扩散到负极。氧的移动过程越容易,氧循环就越容易建立。在阀控式蓄电池内部,氧以两种方式传输:一是溶解在电解液中的方式,即通过在液相中的扩散,到达负极表面;二是以气相的形式扩散到负极表面。传统富液式电池中,氧的传输只能依赖于氧在正极区H2S04溶液中溶解,然后依靠在液相中扩散到负极。 如果氧呈气相在电极间直接通过开放的通道移动,那么氧的迁移速率就比单靠液相中扩散大得多。充电末期正极析出氧气,在正极附近有轻微的过压,而负极化合了氧,产生一轻微的真空,于是正、负间的压差将推动气相氧经过电极间的气体通道向负极移动。阀控式铅蓄电池的设计提供了这种通道,从而使阀控式电池在浮充所要求的电压范围下工作,而不损失水。对于氧循环反应效率,AGM电池具有良好的密封反应效率,在贫液状态下氧复合效率可达99%以上;胶体电池氧再复合效率相对小些,在干裂状态下,可达70-90%;富液式电池几乎不建立氧再化合反应,其密封反应效率几乎为零。
13#
 楼主| 发表于 2005-7-22 14:46:28 | 只看该作者

这个充电器怎么样?

    阀控式密封铅酸蓄电池的工作原理,基本上沿袭于传统的铅酸蓄电池,它的正极活性物质是二氧化铅(PbO2),负极活性物质是海绵状铅(Pb),电解液是稀硫酸(H2SO4)。
    充电过程中存在水分解反应,当正极充电到70%时,开始析出氧气,负极充电到90%时开始析出氢气,由于氢、氧气的析出,如果反应产生的气体不能重新复合利用,电池就会失水干涸。
    阀控式密封铅酸蓄电池在结构、材料上作了重要的改进,正极板栅采用铅钙锡铝四元合金或低锑多元合金,负极板栅采用铅钙锡铝四元合金,隔板采用超细玻璃纤维棉(AGM),并使用紧装配和贫液设计,在电池的上盖中设置了一个单向的安全阀。这种电池结构,由于采用无锑的铅钙锡铝四元合金,提高了负极析氢过电位,从而抑制氢气的析出,同时,采用特制安全阀使电池保持一定的内压,采用超细玻璃纤维棉(AGM)隔板,利用阴极吸收技术,通过贫液式设计,在正负极之间、隔板之中预留气体通道。因此在规定充电电压下进行充电时,正极析出的氧(O2)可通过隔板通道传送到负极板表面,还原为水(H2O),这是阀控式密封铅蓄电池特有的内部氧循环反应机理,这种充电过程,电解液中的水几乎不损失,使电池在使用过程中达到不需加水的目的。
    当今阀控式密封铅酸蓄电池有两类,即分别采用超细玻璃纤维棉(AGM)隔板和硅凝胶二种不同方式来“固定”硫酸电解液。它们都是利用阴极吸收原理使电池得以密封的,但给正极析出的氧气到达负极提供的通道是不同的。
    对AGM密封铅酸蓄电池而言,AGM隔膜中虽然保持了电池的大部分电解液,但必须使10%的隔膜孔隙中不进入电解液。正极生成的氧气就是通过这部分孔隙到达负极而被负极吸收的。
    对胶体密封铅酸蓄电池而言,电池内的硅凝胶是以SiO2质点作为骨架构成的三维多孔网状结构,它将电解液包藏在里边。电池灌注的硅溶胶变成凝胶后,骨架要进一步收缩,使凝胶出现裂缝贯穿于正负极板之间,给正极析出的氧气提供了到达负极的通道。
    由此看出,两种电池的区别就在于电解液的“固定”方式和提供氧气到达负极通道的方式有所不同,因而两种电池的性能也各有千秋。
14#
 楼主| 发表于 2005-7-24 13:24:31 | 只看该作者

这个充电器怎么样?

阀控铅酸电池的失效模式——早期失效模式
    早期失效是指蓄电池组在使用过程中,只有数个月或1年时间,其中个别电池的性能急剧变差,容量低于额定值的80%。
    导致电池早期失效的根本原因是电池中正负极板与AGM隔板中电解液脱离接触。这里有电池设计问题,如极群组装压力和电解液量等。也存在失水问题。
15#
发表于 2005-7-25 21:08:30 | 只看该作者
提示: 作者被禁止或删除 内容自动屏蔽
16#
 楼主| 发表于 2005-7-26 05:28:54 | 只看该作者

这个充电器怎么样?

阀控铅酸电池的失效模式——干涸失效模式
    阀控式密封铅酸蓄电池一旦处于“富液”状态,会使隔板中O2的通道阻塞,气体复合效率低,电池内压力增大,一部分O2来不及复合就从电池内部溜出,导致失水。特别是在安全阀性能不良情况下,失水更加严重,经过一段时间后,电池会失水而干涸。
    干涸失效是阀控式密封铅酸蓄电池所特有的,从电池中排出氢气、氧气、水蒸汽、酸雾,都是电池失水的方式和干涸的原因。
    失水的原因有四:⑴气体再化合的效率低;⑵从电池壳体中渗出水;⑶板栅腐蚀消耗水;⑷自放电损失水。
    干涸的原因有二:⑴浮充电压过高:当浮充电压过高,气体析出量增加,气体再化合效率低,安全阀频繁开启,失水多;⑵环境温度升高:环境温度升高,未及时调整浮充电压,同样产生失水过程。
17#
 楼主| 发表于 2005-7-26 05:43:05 | 只看该作者

这个充电器怎么样?

阀控铅酸电池的失效模式——热失控失效模式
    由于充电电压和电流控制不当,在充电后期,会出现一种临界状态,即热失控。此时,蓄电池的电流及温度发生积累性的相互增强作用,使电池槽壳变形“鼓肚子”。
出现热失控的原因
(1)氧复合反应
    氧复合反应是放热反应,它将导致电池温度升高,电池内阻下降,如不及时下调浮充电压就会使浮充电流加大,引起析氧量加大,复合反应加剧。如此反复积累,将会导致电池出现热失控。
(2)电池结构紧凑
    电池采用了贫液式紧装配设计,隔板中必须保持10%的孔隙不准电解液进入,因而电池内部的导热性差,热容量小。
(3)环境温度升高
    环境温度升高,则浮充电流相应增加,若不及时调整浮充电压,则会使电池温度迅速升高。
18#
 楼主| 发表于 2005-7-26 05:47:08 | 只看该作者

这个充电器怎么样?

阀控铅酸电池的失效模式——负极不可逆硫酸盐化
    当蓄电池经常处于充电不足或过放电,负极就会逐渐形成一种粗大坚硬的硫酸铅,它几乎不溶解,用常规方法充电很难使它转化为活性物质,从而减少了电池容量,甚至成为蓄电池寿命终止的原因,这种现象称谓极板的不可逆硫酸盐化。
19#
 楼主| 发表于 2005-7-26 05:49:23 | 只看该作者

这个充电器怎么样?

阀控铅酸电池的失效模式——正极板栅腐蚀
    在充电时,特别是在过充电时,正极板栅要遭到腐蚀,逐渐被氧化成二氧化铅而失去板栅的作用,为补偿其腐蚀量必须加粗加厚正极板栅。电池设计寿命是按正极板栅合金的腐蚀速率进行计算的,正极板栅被腐蚀的越多,电池的剩余容量就越少,电池寿命就越短。
20#
发表于 2005-8-1 02:00:25 | 只看该作者
提示: 作者被禁止或删除 内容自动屏蔽
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|手机版|Archiver|电动车论坛 ( 京ICP证041302号 )

GMT+8, 2025-3-13 20:26 , Processed in 0.078000 second(s), 13 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表